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SUMMARY

Call centres are becoming increasingly important in our modern commerce. We are interested in modelling
the time-varying pattern of average customer service times at a bank call centre. Understanding such a
pattern is essential for efficient operation of a call centre. The call service times are shown to be log-
normally distributed. Motivated by this observation and the important application, we propose a new
method for inference about non-parametric regression curves when the errors are lognormally distributed.
Estimates and pointwise confidence bands are developed. The method builds upon the special relationship
between the lognormal distribution and the normal distribution, and improves upon a naive estimation
procedure that ignores this distributional structure. Our approach includes local non-parametric estima-
tion for both the mean function and the heteroscedastic variance function of the logged data, and uses local
polynomial regression as a fitting tool. A simulation study is performed to illustrate the method. We then
apply the method to model the time-varying patterns of mean service times for different types of customer
calls. Several operationally interesting findings are obtained and discussed. Copyright # 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Call centres are modern service networks in which customer service agents provide services to
customers via telephones. They have become a primary communication channel between service
providers and their customers. Thus, managing call centre operations efficiently is playing an
increasingly important role in our modern business world [1]. Call centres are mathematically
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modelled as queueing systems and analysed using queueing theory. During the last decade,
considerable research has been devoted to the call centre industry as documented in
Mandelbaum [2]. However, relatively few statistical papers are listed. The current paper is
part of a larger research project aiming at reducing the gap between the current practice of
statistics and the prevalent needs in call centre modelling.

In this paper, the problem of interest is to model the time-varying pattern of call (or customer)
service times at a bank call centre. The motivating application is described below in Section 2.
Call service times are defined as times needed to serve individual customer calls. For a call centre
system, the mean service time is one essential quantity for calculating several basic performance
measures, such as average waiting time in the system or average delay in the queue as shown in
Reference [3]. When combined with a prediction of future arrival rates, it can also be used to
predict the future workload that will arrive to the system, which can then be used for agent
staffing and capacity planning. Consequently, understanding the time-varying pattern of the
mean service time is necessary for understanding the time-varying operational environment of a
call centre, and also for dynamically forecasting future workload.

The importance of the mean service time necessitates the use of more precise tools for
statistical inference about the mean. Common call centre analyses usually assume that the
customer service times follow an exponential distribution. However, in an Israeli banking call
centre (Section 2), the service times are approximately lognormally distributed instead. This
empirical finding has potentially important implications for call centre system modelling [4].

The lognormal nature of the service times, as well as the specific interest in their mean,
motivate us to develop a new method for non-parametric estimation of regression models
involving lognormal errors, as well as for the generation of accompanying confidence bands.
Although the motivating application is to model customer service times at a call centre, the same
methodology can be applied in other contexts involving non-parametric regression problems
with lognormal errors.

Our approach builds upon the special connection between the lognormal distribution and the
normal distribution. Suppose fXi;Zig

n
i¼1�

i:i:d: fX ;Zg where ZjX ¼ x has a conditional lognor-
mal distribution with mean nðxÞ ¼ EðZjX ¼ xÞ: We are interested in providing a simple non-
parametric estimator for nðxÞ; along with a reasonable pointwise confidence band. Let
Y ¼ lnðZÞ and Yi ¼ lnðZiÞ for i ¼ 1; . . . ; n: Then Y1jX1; . . . ;YnjXn have the same conditional
distribution as Y jX ¼ x; which is normal with mean mðxÞ and variance s2ðxÞ: Of particular
interest are scenarios where the variance s2ðxÞ is a function of x (instead of a constant). In the
call centre application, X is the time-of-day when a call begins its service, Z is the corresponding
service time and Y ¼ lnðZÞ is the natural-logged service time of the call, which is normally
distributed conditional on X : The current paper deals with single covariate cases. Possible
extensions to multiple covariate problems are discussed in Section 6.

A simple calculation reveals that

nðxÞ ¼ exp ½mðxÞ þ s2ðxÞ=2� ð1Þ

The relation (1) suggests a simple plug-in approach to derive the regression curve #nðxÞ and the
corresponding confidence band for nðxÞ: The basic idea is stated here while the estimation details
are relegated to Section 3. From the transformed data fXi;Yig

n
i¼1; we derive estimates for mðxÞ

and s2ðxÞ with their corresponding confidence bands. The inference results are then back-
transformed to the original scale to obtain the estimated mean curve, #nðxÞ; along with its
confidence band. The above plug-in principle has been used in one-population lognormal mean
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estimation [5]. By using the lognormal distributional structure, our method has a better per-
formance than a naive alternative that ignores this knowledge (Section 4).

The rest of the paper is organized as follows. In Section 2, we describe the motivating call
centre service time data. Our modelling approach is proposed in Section 3. We illustrate the
proposed approach via a simulation study in Section 4, and show that it improves over the
common naive approach. Section 5 reports the modelling results from the call centre service
time data. We conclude the paper and discuss possible future work in Section 6.

2. CALL CENTRE SERVICE TIME DATA

In this section, we first describe the data that motivate our research. Then we empirically show
that the service times are lognormally distributed. This observation has also been confirmed in
two other call centre service time data sets. Mandelbaum and Schwartz [4] explore various
implications of this distributional finding for modelling call centres.

The data motivating our study were collected at a small call centre from an Israeli bank in
1999. The centre provides several types of services such as Regular Services, Stock Transactions,
New Customer and Internet Assistance. The data of interest here are the service records of those
served service-request calls to the centre. These are the calls in which the caller requests service
from an agent and actually gets the service before leaving the centre. The data include the
starting and ending times of the service in addition to the agent names and the service types. See
Reference [6] for more information about the data. Different features of the data are inves-
tigated rather broadly in Reference [7]. Shen [8] reports a thorough analysis of the service time
data.

Figure 1 plots the lognormal quantile–quantile (Q–Q) plot of the service times for calls served
in November and December. The two dashed curves are the simulated 95% band for the
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Figure 1. Lognormal Q–Q plot of service times ðNovþDecÞ:
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estimated lognormal distribution in order to incorporate random variation. The quantile plot is
very close to linear, and also lies well within the band. This suggests that the distribution of the
service times is very nearly lognormal.

The lognormality also holds for data from other months. We note the exception that, for
January to October, special care needs to be taken to separate out a group of very-short calls.
These are due to several ill-behaved agents who simply hung up on customers to obtain ‘extra’
rest-times. In addition, the lognormality seems to hold well for different types of calls, for
individual agents, and especially when conditioning on time-of-day. The lognormal structure
will motivate our modelling approach. Lognormality of processing times has been previously
recognized by researchers in telecommunication and psychology [9–11].

3. METHODOLOGY

The lognormal service times enable us to use powerful statistical machinery to model the mean
service times as functions of various covariates, for example, time-of-day. In this section, we
propose a simple method to model the mean service time as a continuous function of time-
of-day.

As indicated by (1), in order to estimate the mean curve nðxÞ non-parametrically, we need to
estimate both mðxÞ and s2ðxÞ non-parametrically. Several methods for estimating mðxÞ are
available, for example, kernel regression, local polynomial regression, smoothing splines and
basis expansion methods such as polynomial splines and wavelets. Our basic idea should be
amenable to any of these methods. For illustration purposes, we employ a local polynomial
regression method [12, 13]. Other non-parametric regression methods could be used instead and
would give generally similar results. We also adopt the same method to estimate s2ðxÞ:

Below, in Section 3.1, we briefly review the local polynomial regression method. See
References [12, 13] for details. A data-driven bandwidth selection method is described in Section
3.2. Our estimation procedure is then proposed in detail in Section 3.3.

3.1. Local polynomial regression

Suppose locally around a point x0; the regression function mðxÞ can be well approximated with a
polynomial of order p according to Taylor’s expansion, i.e.

mðxÞ �
Xp
j¼0

ajðx� x0Þ
j

Then, the local polynomial estimator of mð�Þ at x0 is defined as #mðx0Þ ¼ #a0 where #a0; . . . ; #ap
� �

minimizes the locally weighted sum of squaresXn
i¼1

Yi �
Xp
j¼0

ajðXi � x0Þ
j

" #2
KhðXi � x0Þ

Here Khð�Þ ¼ h�1Kð�=hÞ with Kð�Þ being a kernel function on R1 and h > 0 is a bandwidth. The
form of the kernel function K has a minor effect on the estimator. One popular choice, and
the one we use below, is the tricube kernel function

KðxÞ ¼ ð1� jxj3Þ3; jxj41
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As for the polynomial order p; the most common choices are p ¼ 1 and p ¼ 2; which correspond
to local linear regression and local quadratic regression, respectively.

3.2. Data-driven bandwidth selection

The bandwidth h is one of the critical components for local polynomial regression. It controls
the amount of smoothing applied to the data, which affects the bias–variance trade-off. To make
the bandwidth adaptive, we employ a nearest neighbour bandwidth [13]. At a particular fitting
point x0; a nearest neighbour bandwidth hðx0Þ is chosen so that the local neighbourhood always
contains a pre-specified number of points. For a smoothing parameter b 2 ð0; 1Þ; the nearest
neighbour bandwidth hðx0Þ is computed using the following two steps:

1. Compute the distances dðx0;XiÞ ¼ jx0 � Xi j between the fitting point x0 and the data points
Xi;

2. Choose hðx0Þ to be the bnbc th smallest distance.

Each local neighbourhood then contains approximately 100b% of the data.
Sometimes, it suffices to choose a bandwidth subjectively, but there are occasions where the

bandwidth needs to be selected automatically from the data. In our problem, there are two
separate bandwidths to choose, one for estimating the mean function and the other for esti-
mating the variance function.

The literature on automatic bandwidth selection for non-parametric mean function estima-
tion is extensive. See Fan and Gijbels [14], Ruppert et al. [15], Jones et al. [16, 17], just to name a
few. On the other hand, the bandwidth selection literature for non-parametric variance function
estimation is rather sparse. Ruppert et al. [18] use a data-driven bandwidth selector proposed by
Ruppert [19] to select bandwidths for estimating both the mean and variance functions using
local polynomial regression. Levine [20] proposes a cross-validation-type bandwidth selector for
difference-based estimators for non-parametric variance function estimation, and argues that it
works better than a plug-in alternative.

For the current paper, we do not intend to compare existing bandwidth selectors or propose a
new one. Instead, we use the traditional K-fold cross-validation to choose bandwidths. Part of
the following description is cited from Section 7.10 of Hastie et al. [21]. The method is simple
and appears to work well empirically in the simulation study and the call centre application.

K-fold cross-validation usually works as follows. It first randomly splits the data into K
roughly equal-sized parts. Let k : f1; . . . ; ng/f1; . . . ;Kg be an indexing function that indicates
the partition set to which the ith observation xi is allocated by the randomization. Let #f �kb ð�Þ
denote the fitted function computed with the kth part of the data removed. Here the subscript b
emphasizes the fact that the fitted function depends on the bandwidth parameter, b: Then the
K-fold cross-validation estimate of the prediction error is

CVðbÞ ¼
1

n

Xn
i¼1

Lðyi; #f
�kðiÞ
b ðxiÞÞ

where L is a loss function, and is chosen to be the squared error loss in the current paper.
Finally, we select a bandwidth h corresponding to #b that minimizes CVðbÞ: This then leads to the
final chosen model #f #bð�Þ; which is fitted using the entire data. In practice, K is usually chosen to
be 5 or 10. The case where K ¼ n is known as leave-one-out cross-validation, which can be
computationally expensive for moderate to large data.
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3.3. The estimation procedure

In this subsection, we go over the estimation procedure step by step, using the local polynomial
regression method for illustration. In particular, local quadratic regression is employed. As we
go through the details below, one can see that it is fairly easy to generalize the proposed method
to other smoothers.

We first sort the original data fXi;Zig
n
i¼1 in increasing order of the Xi’s. Such an ordering is

necessary for estimating the variance function s2ðxÞ as shown below in Section 3.3.2. One has to
be careful with possible ties within the Xi’s. If these occur, one solution is to take a random
order of the tied observations. To be more rigorous, one can take all the permutations of the tied
observations, apply the following procedure, and then take the average.

Then, we transform the sorted data fXi;Zig
n
i¼1 to fXi;Yig

n
i¼1 by taking the natural logarithm

of the responses, i.e. Yi ¼ lnðZiÞ: On the transformed scale, our model is

Yi ¼ mðXiÞ þ sðXiÞei ð2Þ

where ei jXi
i:i:d:�Nð0; 1Þ: Both the mean function mðxÞ and the variance function s2ðxÞ are

unknown and need to be estimated.

3.3.1. Estimation of mðxÞ. We apply the local quadratic regression to estimate the mean function
mðxÞ: According to the general introduction of local polynomial regression in Section 3.1, the
local quadratic estimator of mðxÞ is #mðxÞ ¼ #a0 where ð#a0; #a1; #a2Þ minimizes the following weighted
sum of squares: Xn

i¼1

½Yi � a0 � a1ðXi � xÞ � a2ðXi � xÞ2�2KhðXi � xÞ

It follows from weighted least squares theory that

#mðxÞ ¼ #a0 ¼ eT1;3ð eXTW eXÞ�1 eXTWY ð3Þ

where e1;3 ¼ ð1; 0; 0Þ
T; eX denotes an n� 3 matrix with ð1;Xi � x; ðXi � xÞ2Þ as its ith row, and

W ¼ diagfKhðX1 � xÞ; . . . ;KhðXn � xÞg; and Y is the column response vector. Furthermore, the
variance of #mðxÞ is

s2mðxÞ ¼ varð #mðxÞÞ ¼ eT1;3ð eXTW eXÞ�1 eXTWSYW eXð eXTW eXÞ�1e1;3 ð4Þ

where SY ¼ varðYÞ ¼ diagfs2ðX1Þ; . . . ; s2ðXnÞg:
The variance expression (4) suggests that, in order to estimate s2mðxÞ; one needs to first

estimate the s2ðXiÞ’s. The variance estimation problem is addressed below in Section 3.3.2.
Suppose we obtain an estimate #s2mðxÞ: Then, one approximate 100ð1� aÞ% confidence interval
for mðxÞ is

#mðxÞ � za=2 #smðxÞ ð5Þ

where za=2 is the upper a=2 percentile of the standard normal. Note that this confidence interval
is a variance band. A common practice is to under-smooth the data so that the resulting local
quadratic estimate #mðxÞ is approximately unbiased.

The errors are normally distributed, which justifies our use of a local regression method
instead of a local likelihood method. (See Section 6 for more discussion of local likelihood.) The
nearest neighbour bandwidth can be chosen subjectively, or be selected automatically by a data-
driven method as pointed out in Section 3.2.
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3.3.2. Estimation of s2ðxÞ. The variance function s2ðxÞ arises in nðxÞ and s2mðxÞ: We propose to
estimate s2ðxÞ using the following two-step procedure, a simple difference-based variance
estimator plus local quadratic regression.

The observations fXi;Yig
n
i¼1 are first regrouped into consecutive non-overlapping pairs

fX2i�1;Y2i�1;X2i;Y2ig
bn=2c
i¼1

Define a squared pseudo-residual D2i to be of the form ðY2i � Y2i�1Þ
2=2; which naturally

estimates s2ðX2iÞ; the local variance at X2i: It can be shown that D2i is approximately a
multiple of a w21 random variable with the multiplier being s2ðX2iÞ; hence EðD2iÞ ¼ s2ðX2iÞ and
varðD2iÞ ¼ 2s4ðX2iÞ:

The estimator D2i is a special difference-based estimator. There are many other difference-
based estimators in the literature as discussed in References [22–24]. More recently, Levine [25]
studies the theoretical properties of a class of difference-based estimators for variance functions.
Our choice of D2i is a simple one that suffices for our purpose. More efficient estimators might
slightly improve results, especially for problems with small sample sizes. For example, one could
opt for a more efficient estimator by using adjacent overlapping pairs [25]. In addition to the
difference-based estimators, there are other types of variance function estimators. See Refer-
ences [18, 26, 27] and references within for more details. Hall et al. [23] and Levine [25] show that
difference-based estimators, in general, reduce the bias caused by the unknown mean function.

After obtaining the D2i’s, we treat fX2i;D2ig
bn=2c
i¼1 as our observed data points and apply local

quadratic regression to obtain #s2ðxÞ: The following model is assumed:

D2i ¼ s2ðX2iÞ þ
ffiffiffi
2

p
s2ðX2iÞe02i; i ¼ 1; . . . ; bn=2c ð6Þ

where e02i have mean 0 and variance 1, and are independent for varying i: Part of our justification
is that, under (2), the D2i’s are (conditionally) independent given the X2i’s, because the D2i’s are
generated from non-overlapping pairs.

Similarly, the local quadratic estimate of s2ðxÞ is

#s2ðxÞ ¼ eT1;3ð eXT
DWD

eXDÞ
�1 eXT

DWDD ð7Þ

where e1;3 ¼ ð1; 0; 0Þ
T; eXD is an bn=2c � 3 matrix with ð1;X2i � x; ðX2i � xÞ2Þ as its ith row, and

WD ¼ diagfKhðX2 � xÞ; . . . ;KhðX2bn=2c � xÞg; and D ¼ ðD2; . . . ;D2bn=2cÞ
T:

The derived #s2ðxÞ can then be plugged into the variance formula (4) to obtain an estimate for
s2mðxÞ; which then leads to a confidence interval for mðxÞ according to (5). Furthermore, the
variance of #s2ðxÞ is given by

s2sðxÞ ¼ eT1;3ð eXT
DWD

eXDÞ
�1 eXT

DWDSDWD
eXDð eXT

DWD
eXDÞ
�1e1;3 ð8Þ

where SD ¼ varðDÞ ¼ diagf2s4ðX2Þ; . . . ; 2s4ðX2bn=2cÞg: Expression (8) suggests that we can esti-
mate s2sðxÞ by plugging in an estimated SD based on estimate (7).

A 100ð1� aÞ% confidence interval for s2ðxÞ is approximately

#s2ðxÞ � za=2 #ssðxÞ

Note that we use za=2 as the cut-off value when deriving the above confidence interval, rather
than a quantile from a Chi-square distribution. This approximation works fine with a moderate
to large sample size, which is the case for our call centre application.

We want to comment on three things here. First, since the fD2ig’s have a Chi-squared
distribution, s2ðxÞ can also be estimated via a local likelihood approach. With a large sample
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size, the two approaches give similar results as shown in Reference [8]. Second, we propose to
estimate the variance of #s2ðxÞ by 2 #s4ðxÞ: This is due to the Chi-square nature of the fD2ig’s.
Alternatively, one can use the squared differences of the fD2ig’s to estimate the variance. Shen
[8] applies both methods to the call centre data and obtains similar results. It might be of interest
to compare the two approaches in a simulation study. Finally, a separate bandwidth needs to be
selected here, which will in general differ from the bandwidth selected for estimating the mean
function.

3.3.3. Estimation of nðxÞ. Finally, we can back-transform the inference results obtained above
to the original scale, and derive the following plug-in estimator for nðxÞ:

#nðxÞ ¼ exp½ #mðxÞ þ #s2ðxÞ=2�

The plug-in principle has been used before to obtain estimators for one-population lognormal
means as reviewed in Shen et al. [5]. For example, the maximum likelihood estimator (MLE) for
the mean n is obtained by plugging in the MLEs of m and s2:

Given the methods used for estimating mðxÞ and s2ðxÞ; #mðxÞ and #s2ðxÞ are asymptotically
independent, which suggests that

var ð #mðxÞ þ #s2ðxÞ=2Þ � s2mðxÞ þ s2sðxÞ=4

Then, the corresponding 100ð1� aÞ% large sample confidence interval for nðxÞ is

exp #mðxÞ þ #s2ðxÞ=2� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#s2mðxÞ þ #s2sðxÞ=4

qh i
The use of za=2 in the above confidence interval is supported by the nice finite-sample coverage
property of Cox’s interval [28] for lognormal means. Shen [8] shows that this approximation
works fine as long as the sample size is not too small and the variance is not too large. To be
exact, we should derive the confidence interval based on the cut-off values of the exact
distribution of #mðxÞ þ #s2ðxÞ=2: A parametric bootstrap approach seems to be a reasonable route
to go. Shen and Zhu [29] describe one such approach for a lognormal linear model setup.
We intend to follow this reasoning in a future manuscript.

4. A SIMULATION STUDY

In this section, we use Monte Carlo simulation to investigate the performance of the proposed
approach, and also compare it with an alternative direct estimation approach, which ignores the
lognormal nature of the errors. For both approaches, the ‘optimal’ bandwidth is selected using
the 5-fold cross-validation as described in Section 3.2.

To gauge the performance of an estimator #nð�Þ of nð�Þ; we define a criterion, the square-root of
average squared error (RASE), as

RASE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXngrid

k¼1
½#nðukÞ � nðukÞ�2=ngrid

q
ð9Þ

where fuk; k ¼ 1; . . . ; ngridg are grid points that are chosen to be equally spaced over a certain
interval within the data range.

We study the model in (2) where mðxÞ ¼ 3þ 6ðxþ 0:3Þe�8x
2

þ 2ðxþ 0:3Þe�4ðx�0:7Þ
2

;
sðxÞ ¼ aþ ðx� 0:5Þ2 with a chosen to be 0.5, 0.75, 1.5 and 2, fXig are i.i.d. U½0; 1� and feig

H. SHEN AND L. D. BROWN304

Copyright # 2006 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2006; 22:297–311

DOI: 10.1002/asmb



are i.i.d. Nð0; 1Þ: The sample size n is chosen to be 2000 and 5000. For each simulation setup, the
simulation is replicated 100 times. Model (2) suggests that zijXi is conditionally lognormally
distributed with mean

nðXiÞ ¼ exp ½mðXiÞ þ s2ðXiÞ=2�

For illustration purposes, Figure 2 plots the functions mð�Þ; sð�Þ and nð�Þ for a ¼ 0:5: Different a
shifts sð�Þ vertically, and consequently changes nð�Þ:

The naive alternative approach ignores lognormality of the zi’s and assume the standard
model

zi ¼ nðXiÞ þ eni ; i ¼ 1; . . . ; n ð10Þ

where feni g are normally distributed. Under this model, n can be estimated non-parametrically
by regressing zi on Xi using local polynomial regression.

When calculating the RASEs from each model, we choose 100 equally spaced points between
0 and 1 as the grid points fukg to be used in (9). For each simulation setup, Table I reports the
mean and the standard error of the ratios between the 100 RASEs from the proposed lognormal
approach and the naive normal approach. The summaries clearly suggest that our proposed
estimation procedure, which takes into account the lognormality, gives much more accurate
results than the direct estimation procedure. The improvement of Model (2) over Model (10)
increases as the variance function s2 gets larger. This is consistent with results from comparing
various estimators of one-population lognormal means [5].

Figure 3 plots the real function and the average fitted function over the 100 runs for a ¼ 1:5
and n ¼ 5000: For each grid point, we also plot the 5%- and 95%- quantiles of the corre-
sponding 100 fitted values. The two panels correspond to Models (2) and (10), respectively.
As one can see, our proposed procedure can estimate the real function with smaller bias and also
smaller variability than the direct approach. The ratio between the average absolute biases is
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Figure 2. Plot of mð�Þ; sð�Þ and nð�Þ for a ¼ 0:5:

Table I. Mean (SE) of the RASE ratios (Model (2)/Model (10)).

n a ¼ 0:50 a ¼ 0:75 a ¼ 1:50 a ¼ 2:00

2000 0.902 (0.0225) 0.948 (0.0329) 0.924 (0.0389) 0.804 (0.0441)
5000 0.901 (0.0213) 0.897 (0.0274) 0.903 (0.0417) 0.717 (0.0445)
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0.537, and the ratio between the average interval widths (i.e. the distances between the 5%- and
95%-quantiles) is 0.855. Similar results are obtained for the other simulation setups. Again, the
improvement of the lognormal approach over the normal approach increases as a gets larger,
which makes intuitive sense.

We also investigate the coverage property of the pointwise confidence band for nð�Þ as pro-
posed in Section 3.3. For each simulation setup, Table II reports the mean and median of the
pointwise empirical coverage probabilities of the 95% confidence bands calculated for the 100
simulations. These summaries are all very close to the nominal level, which suggests that our
proposed confidence band has good finite-sample coverage.

5. THE CALL CENTRE APPLICATION

In this section, we apply the Section 3 methodology to the call centre data and model the time-
of-day pattern of mean service times. Out of the six major types of calls handled in the centre, we
consider two specific types of calls, Regular Service (PS) and Internet Assistance (IN). PS calls
constitute the majority of all the calls while IN calls are handled by a separate pool of service
agents beginning in August. It is of interest to perform separate analyses for these two call types
and compare the results. As it turns out, these two types of calls have very different mean service
time patterns across time-of-day. This observation is very important for call centre staffing,
especially for call centres using skill-based routing, where different types of calls are routed to
agents with different skills for service.
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Figure 3. Real, mean, 5% and 95% functions of #nð�Þ ða ¼ 1:5; n ¼ 2000Þ:

Table II. Mean (Median) of the empirical coverage probability of model (2).

n a ¼ 0:50 a ¼ 0:75 a ¼ 1:50 a ¼ 2:00

2000 0.95 (0.96) 0.93 (0.94) 0.94 (0.94) 0.94 (0.96)
5000 0.93 (0.93) 0.95 (0.96) 0.94 (0.95) 0.95 (0.95)
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Skill-based routing is a newly developed technology that allows for distinctions to be made
among different types of calls and different skills of agents. The separate agent pool for the IN
calls is one simple example of skill-based routing. Another example would be to group agents
into regular and premium agents and let them handle different types of calls. See Reference [1]
and the references within for more on skill-based routing and associated capacity-planning
problems.

For the following analyses, we apply the local quadratic regression method with the tricube
weight function. The nearest neighbour bandwidths are chosen automatically using the 5-fold
cross-validation approach described in Section 3.2. As pointed out earlier, two separate band-
widths need to be selected.

Due to the very-short-call phenomenon mentioned in Section 2, the analyses below involve
only the served calls in November and December. Thus, a mixture model analysis to separate
out those very-short calls is not needed. Furthermore, we focus on those calls arriving during the
normal business hours (7:00AM to midnight) of weekdays; the call centre does not operate fully
during weekends and call volumes are much smaller then. In total there are 62 303 calls in our
data: 42 613 PS calls and 5066 IN calls.

5.1. PS calls

For mean function estimation, the bandwidth parameter b is searched between 0.01 and 0.61
with a step size of 0.02, and the ‘optimal’ choice is 0.07, as shown in the first panel of Figure 4.
The second panel of Figure 4 plots the corresponding fitted mean curve (solid line) with the 95%
confidence band (dashed lines) attached. As for the variance function, the search range for the
bandwidth parameter is between 0.2 and 0.6 with the same step size. The cross-validation selects
a bandwidth of 0.28 as shown in the first panel of Figure 5. The fitted variance function with the
corresponding confidence band is plotted in the second panel of Figure 5.

From Figure 5, one sees variance heteroscedasticity, with the variances increasing towards
9:30PM. The difference is significant as indicated by the non-overlapping confidence intervals at
6:00PM and 9:30PM. This difference has a more significant effect on the final estimate of the
mean service time because it is exponentiated and multiplied to the exponential of the estimated
mean Log(Service Time).
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Figure 4. 5-fold Cross-validation for mean of Log(Service Time) (PS).
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Figures 4 and 5 are the building blocks for Figure 6, which graphs the mean service times of
PS calls across time-of-day. Since PS calls constitute 68.4% of all the calls, the pattern is very
similar to the one for all calls.

From Figure 6, we can see that the mean service times are not constant across time-of-day,
but range between 140 and 230 seconds and peak around 10:00AM and 3:00PM. Starting from
the beginning of a day, they increase until their first peak just prior to 10:00AM, then decrease
until 1:30PM, when they begin to increase again and reach the second peak around 3:00PM
before they decrease again until 5:00PM. After that, they increase again until 6:00PM,
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Figure 5. 5-fold Cross-validation for variance of Log(Service Time) (PS).
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Figure 6. Mean Service Time (PS) vs. time-of-day.
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stay relatively constant afterward until 10:30PM, then decrease until the end of the day. Given
the accompanying 95% confidence band, the bimodal pattern is statistically very
significant. Call centre managers should take this into account while arranging staffing for
the call centre.

We now empirically validate the lognormal assumption of the service times, conditioning on
time-of-day, by looking at the residuals from the regression of Log(Service Time) on
Time-of-day for these PS calls. The normal Q–Q plot of the residuals (unshown here) suggests
that they are very close to being normal, validating our assumption of lognormality of the
service times. Bandwidths selected from 10-fold cross-validation yield very similar results.
One can also subjectively choose the bandwidths to generate interesting curves that are nearly
free of extraneous wiggles, which turn out to be close to the automatically chosen bandwidths in
this case.

5.2. IN calls

Due to the special nature of Internet Assistance, IN calls require special skills from the service
agents. As such, the call centre provides a separate pool of agents to handle IN calls beginning in
August. Figure 7 plots the mean service times across time-of-day along with a 95% confidence
band. The bandwidths were chosen via 5-fold cross-validation.

The pattern of the mean service times is significantly different from the PS calls. The mean
service times range between 350 and 450 seconds, much longer than the PS mean service times.
There are some fluctuations within the day, but they may not be significant given the wide
confidence band. We thus conclude that the IN mean service times do not change much over the
course of a day. This might be an effect of the separate agent pool or the special service nature of
the IN calls.
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Figure 7. Mean Service Time (IN) vs. time-of-day.
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6. CONCLUSIONS AND FUTURE WORK

This paper estimated the time-varying mean service times of calls at a bank call centre. The
service times were shown to be approximately lognormally distributed. Motivated from this
structure, we propose a new methodology for non-parametric (heteroscedastic) regression with
lognormal errors, which also provides a pointwise confidence band. Local polynomial regression
is employed in the procedure. The methodology is shown via a simulation study to have better
performance than a naive approach. The method is applied to model the mean service time
patterns of two types of calls served at the call centre. The results show that the mean service
times may dramatically depend on time-of-day, and they differ significantly between different
types of calls. These findings have important operational implications for call centre managers
in terms of agent staffing and call routing.

The same methodology can be applied to other regression contexts where lognormal errors
are involved. For example, Ingolfsson et al. [30] describe a data set of individual ambulance
calls, where the ambulance travel time is shown to be lognormally distributed, conditioning on
the distance between the ambulance station and the destination. The problem of interest is to
estimate the mean travel time as a function of the travel distance. Such quantification is a
necessary input for various planning models for ambulance deployment as well as for pricing
ambulance service. Here, it is reasonable to assume that the mean function is monotonically
increasing with distance, which is different from our call centre application. We intend to look
into this in the future.

Our current method estimates mð�Þ and s2ð�Þ separately. An alternative is to estimate them
simultaneously. One idea is to approximate mð�Þ and lnðs2ð�ÞÞ by spline functions. Since the
responses are lognormally distributed, the corresponding likelihood function can be written
down in a closed form, and maximum likelihood estimates for mð�Þ and s2ð�Þ can be obtained
using Newton–Raphson or Fisher-scoring methods. The accompanying confidence bands can be
derived based on the asymptotic normality of the MLEs. Conceptually, there is no problem in
extending this approach into a multivariate scenario. An investigation of this approach is
currently under way. Alternatively, one could approximate mð�Þ and lnðs2ð�ÞÞ locally using pol-
ynomials according to Taylor expansion, and maximize the corresponding likelihood function
to obtain local likelihood estimates of mð�Þ and s2ð�Þ:
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